Research Methodology Study Design

Alireza Amirabadizadeh

PhD by research

Research Institute for Endocrine Sciences

Shahid Beheshti University of Medical Sciences

Study Design

Quantitative

- Observational
- Experimental

Experimental (Randomized Control Trial - RCT)

Analytic Studies

Prevalence of R.F. = No. of risk factor+ / No. of subjects

Trend Design in Cross-Sectional studies

Advantages

- Useful for descriptive studies
- Rapid, inexpensive, can provide <u>analytic clues</u>.
- Less prone to error about exposure recall bias

<u>Disadvantages</u>

- Prone to sample distortion bias.
- Unable to sort out what came first exposure or outcome
- Prone to seasonal and time to time variations

cross-sectional studies

Selection of cases

- Precise definition of `case'.
- Inclusion / Exclusion criteria.
- How are cases to be identified? How recruited?

Selection of Controls

Source (hospital patients without disease; neighborhood controls; random sample of population; sibs).

Inclusion / exclusion criteria.

Controls must be related to the same population as the cases are.

Collection of information

- > Identify risk factor of interest
- Method of collection of information (questionnaire; medical records; employment records)
- Same procedure to be used for cases and controls
 Interviewer should be unaware who is a case and who a control.

ADVANTAGES

- Relatively cheap compared to cohort studies
- Relatively quick
- Useful for study of rare diseases.
- No ethical problems
- Useful for diseases with long latent period.

Disadvantages

- Estimate of disease incidence cannot be done
- At times difficult to measure exposure accurately
- Open to selection bias.
- Difficult to interpret.

Case-control Studies

Cohort Study

 A major limitation of cross-sectional surveys and casecontrol studies is difficulty to determine if <u>exposure</u> or <u>risk</u>. <u>factor</u> preceded the <u>disease</u> or <u>outcome</u>.

★ <u>Cohort Study:</u>

is the Key Point:

Presence or absence of risk factor determine <u>before</u> outcome occurs.

Cohort Study

Cohort studies

- Forward looking study (Prospectively or Retrospectively)
- Incidence study
- starts with people free of disease
- assesses exposure at "baseline"
- assesses disease status at "follow-up"

Indication of a cohort study

- When there is good evidence of exposure and disease.
- When exposure is rare but incidence of disease is higher among exposed
- When follow-up is easy, cohort is stable
- When ample funds are available

Elements of cohort study

Selection of study subjects
 (A defined population)
 Obtaining data on exposure
 Follow up to detect outcome

Selection of study subjects

- General population
 - Whole population in an area
 - A representative sample
- Special group of population
 - Selected group
 - occupation group / professional group
 - Exposure groups
 - Person having exposure to some physical, chemical or biological agent
 - e.g. X-ray exposure to radiologists

Types of Cohort Study

Prospective cohort study

• Retrospective (historical) cohort study

 Combination of Retrospective and Prospective cohort study.

Cohort studies

Strengths

- We can find out incidence rate and risk
- More than one disease related to single exposure
- can establish cause effect
- good when exposure is rare
- minimizes selection and information bias

Weaknesses

- losses to follow-up
- often requires large sample
- ineffective for rare diseases
- long time to complete
- expensive
- Ethical issues

Results of a Case-Control Study

Dielsfasten	Disease				
RISK factor	Yes (cases)	No (controls)			
Yes	а	С			
No	b	d			
Total	N1	N2			

N1 and N2 are fixed numbers

Result of cohort study

Risk factor	Disease		
	Yes	NO	
Yes	А	В	
NO	С	D	
Total	N1	N2	

Nested case-control study

1

Case-cohort study

Cross-Sectional Case-Control Study

Measuring Associations between EXPOSURE and OUTCOME

Consider three kind of study designs:

How Do We Determine Whether a Certain Disease Is Associated with a Certain Exposure?

How can we determine whether an excess risk is associated with each of the food items?

	Disease +	Disease -	Total
Exposure +	а	b	a+b
Exposure -	C	d	c+d

Excess risk can be calculated in the two following ways:

• 1. The ratio of the risks (or of the incidence rates):

Risk of disease in exposed group

Risk Ratio =

Risk of disease in unexposed group

Excess risk can be calculated in the two following ways:

• 1. The ratio of the risks (or of the incidence rates):

Risk Ratio = Risk of disease in exposed group Risk Ratio = Risk of disease in unexposed group

• 2. The difference in the risks (or in the incidence rates):

Risk Difference = (Risk of disease in exposed) – (Risk of disease in non exposed)

If RR Risk in exposed equal to risk in nonexposed (no association)

- If RR Risk in exposed greater than risk in nonexposed > 1 (positive association; possibly causal)
- If RR Risk in exposed less than risk in nonexposed < 1 (negative association; possibly protective)

Relative Risk in Case-Control Studies

- The incidence can't be derived from case-control studies since
 - Begin with diseased people (cases) and non-diseased people (controls)
- Therefore, can't calculate relative risk directly But, <u>we can use another</u> <u>method called an odds ratio</u>

	Disease +	Disease -
Exposure +	а	b
Exposure -	C	d
Total	a+c	b+d

Odds:

- The chance of something happening to the chance of it not happening
- Odds= P/ 1-P
- An odds is a special type of ratio, one in which the numerator and denominator sum to one.

Example:

- Suppose we are betting on a horse, which has a 60% probability of winning the race (P). The horse therefore has a 40% probability of losing (1 P).
- If these are the probabilities, what are the *odds* that the horse will win the race?

Odds ratio in a cohort study

 Odds ratio can be obtained from either a cohort or a casecontrol study and can be used instead of the relative risk.

Odds ratio in a case control study

© Elsevier Ltd. Gordis: Epidemiology 3E www.studentconsult.com

Cohort Study

1-year incidence of acute MI in individuals with sever SBP (≥180mmHg) and normal SBP (<120mmHg)

Diand	Myocardial Infarction				
Pressure Status	Number	Present	Absent	Probability	Probability Odds _{dis}
Severe hypertension	10,000	180	9820	180/10,000 = 0.0180	180/(10,000 - 180) = 180/9820 = 0.01833
Normal	10,000	30	9970	30/10,000 = 0.0030	30/(10,000 - 30) = 30/9970 = 0.00301
$RR = -\frac{1}{1}$	$\frac{180}{0,000}{\frac{30}{0,000}} = \frac{0.0}{0.0}$	$\frac{0180}{0030} = 6.00$)	$OR = \frac{\frac{180}{9820}}{\frac{30}{9970}} = \frac{0.0}{0.0}$	$\frac{1833}{0301} = 6.09$
	Inc	idence	is lov	v ⇔ RR ≈ OR	

Cohort Study Local reactions to influenza vaccine

		Local Reaction				
Group	Number	Present	Absent	Probability	Probability Odds _{dis}	
Vaccine	2570	650	1920	650/2570 = 0.2529	650/(2570 - 650)= 650/1920 = 0.3385	
Placebo	2410	170	2240	170/2410 = 0.0705	170/(2410 - 170) = 170/2240 = 0.0759	
ŗ	$R = \frac{\frac{650}{2570}}{2} = \frac{1}{2}$	0.2529	- 3.59	$OR = \frac{\frac{650}{1920}}{\frac{1}{1920}} = \frac{0.3}{0.3}$	$\frac{3385}{3385} = 4.46$	
	$\frac{170}{2410}$	0.0705		$\frac{170}{2240}$ 0.0	1759	
	In	cidence	is high	⇔ RR ≠ OR		

What about 95% Clof RRor OR?

- It should not include"1".
- Then the p-value would be < 0.05.

Reference Population

the way in which cases and controls, or exposed and nonexposed individuals, are selected such that an apparent association is observed

Study Sample

Selection Bias

- Non-response Bias
- Exclusion Bias
- Berksonian Bias
- Healthy worker effect
- Differential losses to follow-up

Reference Population

the way in which cases and controls, or exposed and nonexposed individuals, are selected such that an apparent association is observed

Study Sample

CONFOUNDING

A confusion of effect

D. Khalili

Control of confounding

IN DESIGN

- Randomization
- Restriction
- Matching

IN ANALYSIS

- Standardization
- Stratification
- Multivariate analysis

The most applicable method

Some points in:

EFFECT MODIFICATION

- The effect of one factor on outcome is modified by levels of another factor
- Important to present and discuss
- A factor may be both a confounder and an effect modifier

Report Stratum-specific results of the association between exposure and outcome

Computation of adjusted OR

 $OR_{ad}\approx OR_{Crude}$

Third factor = no role

Use crude OR to measure the association between exposure and outcome

Clinical Trial (on patients)

• Field Trial (on healthy people)

• Community Trial (on communities)

Phases of Drug Development

	Phase 1	Phase 2	Phase 3	Phase 4
No. of Participants	15-30	<100	100 to thousands	Several hundreds to several thousands
Purpose	First in humans Find safe dose	Determine efficacy	Compare new agent with standard treatment	Post –market Long-term safety and efficacy

Typical Study Design Features

- Treatment sequences
 - e.g. single, parallel, crossover, withdraw, survival
- Blinding/masking
 - e.g. open label, single blind, double blind, double dummy
- Control
 - dose response, active, placebo
- Methods of assigning treatment

– e.g. randomization +/- stratification

Mostly in phase II clinical trials

PARALLEL GROUP DESIGNS "gold-standard" of clinical research.

- > There are as many groups as study treatments under comparison.
- > Each patient is assigned to only one of the treatment groups through randomization.
- > All treatment groups are treated and evaluated simultaneously

Parallel Group Design(Cont.)(Stratified Design)

with a stratified randomization considering some prognostic factors as sub-experimental factors.

- Before patients enter a clinical trial, a run-in-period of placebo, no active treatment, dietary control, or active maintenance therapy is usually employed prior to randomization.
- A run-in period is usually employed based on a single-blind fashion.

CROSSOVER DESIGNS

- Sequence (Period) Effect?
 - Carryover Effect?

Clinical Trial Center

Equivalence/Non-inferiority Vs. Superiority

- Sometimes, the goal is not to show that the new treatment is better, but that the new treatment is 'equivalent' to the control.
- If the CI lies strictly within [-Δ, +Δ] the two treatments are called 'equivalent.' But the amount of Δis more important in equivalency/noninferiority than superiority.
- Non-inferiority is different from equivalence. In an equivalence trial, the desired conclusion is that two products are the same or `not unacceptably different' from each other. In a non-inferiority trial, by contrast, the aim is to show that a new product is not unacceptably worse than an older one.

Equivalence/Non-inferiority Vs. Superiority

0

Treatment difference (Test drug - Control)

Meta analysis

Why are Systematic Reviews Necessary?

• The large amount of medical literature requires clinicians and researchers alike to rely on systematic reviews in order to make an informed decision.

• Systematic Reviews minimize bias. "A systematic review is a more scientific method of summarizing literature because specific protocols are used to determine which studies will be included in the review."

Why are Systematic Reviews Necessary?

• "The volume of published material makes it impractical for an individual clinician to remain up to date on a variety of common conditions. This is further complicated when individual studies report conflicting conclusions, a problem that is prevalent when small patient samples and retrospective designs are used.

Characteristics of Systematic Reviews

• Two possible approaches: Or qualitative synthesis

statistical synthesis of data (meta-analysis) if appropriate and possible

Literature Search

- List of popular databases to search
 - Pubmed/Medline
 - Embase
 - Cochrane Review
 - ISI Web of Science
 - SCOPUS

- https://www.riskofbias.info/
- <u>https://www.cochranelibrary.com/</u>
- https://www.crd.york.ac.uk/prospero/